
1 Generic Payments Design

Oracle FLEXCUBE Direct Banking
Generic Payments Design

Release 12.0.2.0.0

 Part No. E50108-01

September 2013

Generic Payments Design

2 Generic Payments Design

September 2013

Oracle Financial Services Software Limited
Oracle Park
Off Western Express Highway
Goregaon (East)
Mumbai, Maharashtra 400 063
India
Worldwide Inquiries:
Phone: +91 22 6718 3000
Fax:+91 22 6718 3001
www.oracle.com/financialservices/
Copyright © 2008, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial
computer software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any
operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk
of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to
take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and
its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services.

http://www.oracle.com/financialservices/

3 Generic Payments Design

 CONTENTS

1. Preface

1.1. Intended Audience ... 4
1.2. Documentation Accessibility .. 4
1.3. Access to OFSS Support .. 4
1.4. Structure ... 4
1.5. Related Information Sources……4

2 Abbreviations... 4
3 Generic Payments Design .. 6

3.1 Developing a new Payments Transaction ... 7
3.2 Validations using txn_data_master and txn_data .. 10
3.3 Configuring Deal for Payments Transaction ... 11
3.4 Configuring Auth for Payments Transaction ... 12
3.5 Configuring the Beneficiary for Payments Transaction .. 14

4 Add/Modify a Beneficiary Type ... 15
4.1 Adding a UDF field... 16
4.2 Adding a Non-UDF field... 17

4 Generic Payments Design

1. 1.Preface

1.1. Intended Audience
This document is primarily targeted at
• Oracle FLEXCUBE Direct Banking Development Teams
• Oracle FLEXCUBE Direct Banking Implementation Teams
• Oracle FLEXCUBE Direct Banking Implementation Partners

1.2. Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

1.3. Access to OFSS Support
https://flexsupp.oracle.com/

1.4. Structure

This manual is organized into the following categories:

Preface gives information on the intended audience. It also describes the overall structure of the User

Manual

Generic Payments Design provides information on Developing a new Payments Transaction , Validations

using txn_data_master and txn_data , Configuring Deal for Payments Transaction etc.

Chapter post Generic Payments Design is dedicated to Add/Modify a Beneficiary Type

1.5. Related Information Sources

For more information on Oracle FLEXCUBE Direct Banking Release 12.0.2.0.0, refer to the following

documents:

 Oracle FLEXCUBE Direct Banking Licensing Guide

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://flexsupp.oracle.com/GSTOOLSSL/ENG/login_non.htm

5 Generic Payments Design

2. 2.Abbreviations

FCDB / FC DB / FC
Direct Banking /
Direct Banking

Oracle FLEXCUBE Direct Banking

DBA Database Administrator

URL Uniform Resource Locator

JNDI Java Naming and Directory Interface

DB Database

IP Internet Protocol

FCAT BASE DIR FCDB Base Working Directory

6 Generic Payments Design

3. 3.Generic Payments Design

After designing the screen for payments using Channel Workbench Tool one can define the payment
module using the generic payment service using the following steps.

7 Generic Payments Design

3.1. DEVELOPING A NEW PAYMENTS TRANSACTION

To start a payment Transaction a developer needs to make an entry in following tables

 Msttxn

 MstUserTypeTxn

 Appldata for dataname TXN_DESC for the corresponding idtxn.

 MstChannelATS for the idtxn for each screen number.

 MstServices for the services

Map the Transaction to the Role to allow it to appear in the Menu of the Customer Login.

For each prepare screen a generic service XSL has been used. For e.g. for RRPPT01 service xsl is
genericpaymentprepare.xsl.

<ServiceRequest>

<serviceName>GenericPaymentServiceInterface.GenericPaymentService.prepare
GenericPaymentDetails

</serviceName>
<request>
 <NullRequestDTO>
 </NullRequestDTO>
</request>
</ServiceRequest>

The service name used in this xsl is GenericPaymentService and the method is
prepareGenericPaymentDetails. To hook this method of GenericPaymentService to the service of the
desired transaction the developer needs to make an entry in following table

 GenericPaymentServiceMapper.

The developer needs to give the full qualified class name of the service. An additional column of
requestdtomapper has been provided which can be used to provide a mapper class which can map the
GenericPaymentRequestDTO to the desired RequestDTO. The new mapper class must extend
GenericPaymentsDataMapper.java. If no mapper class name is given the system will assume that the
service is to be invoked using GenericPaymentRequestDTO.

For each initiation screen a generic service xsl has been used. For e.g. for RRPPT02 service xsl is
genericpaymentinit.xsl

<ServiceRequest>

<serviceName>
GenericPaymentServiceInterface.GenericPaymentService.initiate
GenericPaymentDetails

</serviceName>
<serviceAction>

8 Generic Payments Design

<xsl:value-of select="/faml/request/fldnextaction"/>
</serviceAction>
<referenceNo>

<xsl:value-of select="/faml/request/fldreferenceno"/>
</referenceNo>
<stateBit>

<xsl:value-of select="/faml/request/fldstatebit"/>
</stateBit>

<request>
<GenericPaymentRequestDTO>
 <srcAccount>
 <AccountNoInputDTO>
 </AccountNoInputDTO>
 </srcAccount>
 <destAccount>
 <AccountNoInputDTO>
 </AccountNoInputDTO>
 </destAccount>
 <txnAmount>

<xsl:value-of select="//faml/request/fldtxnamount"/>
</txnAmount>

 <txnCurrency>
<xsl:value-of select="//faml/request/fldtxncurrency"/>

</txnCurrency>
 <valueDate>

<xsl:value-of select="/faml/request/fldvaluedate"/>
</valueDate>

<xsl:if test="/faml/request/fldudf">>
 <udfFields>
 <xsl:for-each select="/faml/request/fldudf">
 <UDFDTO>
 <xsl:variable name="udfname">

<xsl:value-of select="concat ('/faml/request/', .)"/>
</xsl:variable>

 <udfName>
<xsl:value-of select="."/>

</udfName>
 <udfValue>

<xsl:value-of select="dyn:evaluate($udfname)"/>
</udfValue>

 </UDFDTO>
 </xsl:for-each>
 </udfFields>
</xsl:if>
</GenericPaymentRequestDTO>
</request>
</ServiceRequest>

9 Generic Payments Design

The xml tags declared in this XSL are the basic parameters that are required for a payment transaction.
Apart from these fields, what else new field has to be handled on the screen are handled as udfdata.

Now for each screen the output XSL used is “genericscreentemplate.xsl”. This XSL is the master xsl for
building the entire screen using the screen definition developed through Channel Workbench. The
developer needs to define these fields in screen design xml so that the respective values are passed to
the service. The field for which value of “ISUDF” in screen design xml is ‘Y’ are automatically taken care
and passed to the service as udfdata.

10 Generic Payments Design

3.2.VALIDATIONS USING TXN_DATA_MASTER AND TXN_DATA

All the transactions that are developed through generic payment service should have flag value “Y” for
the column “isgenerictemplate” in the table MstChannelATS. Once the value of this column is set as Y,
all the entries that are to be done in txn_data_master and txn_data should have the requestId or IdTxn
appended before the validation field separated by a “.” as explained below.

RRPPT02.GENERICPAYMENTSERVICEINTERFACE.GENERICPAYMENTSERVICE.INITIATEGENERICPAYMENTD
ETAILS.SRCACCOUNT

Or

PPT.GENERICPAYMENTSERVICEINTERFACE.GENERICPAYMENTSERVICE.INITIATEGENERICPAYMENTDETAIL
S.SRCACCOUNT

The concept of using the second format of validation entries is to prevent replication of entry, say the
same validation entry is required for screen no 2 and 3, in that case a developer can do the entry by
appending the idtxn before the validation field so they need not need to replicate the entry on the basis
of idrequest.

11 Generic Payments Design

3.3 CONFIGURING DEAL FOR PAYMENTS TRANSACTION

If cross currency involve during the payments, then such transaction require deal box or deal
functionality.

Availability of deal functionality is depending on customer profile of the primary customer of the current
logged in user.

If the value of 'isallowcombinspotfwd' column in customer profile is 'Y' then only the deal box will be
appear in transaction else otherwise it will not.

Deal box functionality can be included in generic payments using three different type which are 'DT','DV'
and 'DC'.

'DT' type should be included in prepare page. (select * from screentemplate where identity='B001' and
idrequest ='RRPPT01' and type = 'DT')

'DV' type sholud be included in verify,confirm and auth-template page(select * from screentemplate
where identity='B001' and idrequest in
('RRPPT02','RRPPT03','RRPPT89') and type = 'DV')

'DC' type should be included in confirm and auth-template page. (select * from screentemplate where
identity='B001' and idrequest in('RRPPT03','RRPPT89') and
type = 'DC')

There are some functions present in commonftfunctions.xsl. These functions should be called from
respective js file
Also respective js file should have some functions like ‘fnGo’,’fnIsDealBoxRequired’ etc
(Please refer RRPPT01.js, RRPPT02.js, RRPPT03.js, RRPPT89.js etc).

Once the types are included and js files are created then the rest of the functionality will be
automatically handled by the framework.

12 Generic Payments Design

3.4 CONFIGURING AUTH FOR PAYMENTS TRANSACTION

Creating 'save as Template' screens (RRXXX97)

It requires screen definition xml file as 'RRXXX97.xml' and js file as 'RRXXX97.js'
Confirm screen ('RRXXX03') and 'save as template confirm' screen (RRXXX97) are identical. So there is no
need of creating extra screentemplate for 'RRXXX97'.
Developer can copy RRXXX03.xml file to 'RRXXX97.xml' using copy functionality in screentemplate xml
generator tool.

Creating 'save as draft' screens (RRXXX98)

It requires screen definition xml file as 'RRXXX98.xml' and js file as 'RRXXX98.js'
Confirm screen ('RRXXX03') and 'save as draft confirm' screen (RRXXX98) are identical. So there is no
need of creating extra screentemplate for 'RRXXX98'.
Developer can copy RRXXX03.xml file to 'RRXXX98.xml' using copy functionality in screentemplate xml
generator tool.

Creating 'transactions - template' screens (RRXXX89)
Separate screen definition (RRXXX89) and respective js file (RRXXX89.js) require for 'transactions -
template' screens (RRXXX89)

(Please refer 'RRPPT97.js', 'RRPPT98.js', and ‘RRPPT89.js’)

Creating ‘Auth_prepare’ screen (RRXXX99)

This screen will be same as Prepare screen (Example RRXXX01).
This screen will be called with id request as RRXXX99. Screen tables entries are not required for this
screen. (No need to generate RRXXX99.xml and no need to create RRXXX99.js). Framework will use the
same screen of prepare transaction (like RRXXX01.xml and RRXXX01.js)
Make sure that the screen sequence number of prepare screen is ‘01’. If is not, then developer need to
specify target screen for ‘RRXXX99 request’. This specification can be done inside ‘RRXXX89.js’ file. (**
RRXXX89 is auth view screen in LEAP)
For Example – Consider the following cases.

Case 1 – Prepare screen’s sequence number is ‘01’ (RRXXX01)
 //no need to specify target explicitly.

Case 2 – Prepare screen’s sequence number is other than ‘01’ (like RRXXX03)
//developer need to call the function ‘fnSetNextScreenRequestId ‘ from //RRXXX89.js as shown below.
 function initialize () {
 fnSetNextScreenRequestId ('RRXXX03');
 //rest of the code
}

Validation for 'save as template' (RRXXX97)

13 Generic Payments Design

It does not require separate entry in txn_data_master. It follows the same validation which has been
followed by verify and confirm transaction. In FCDB 6.0.0.0.0.0.0 entries for RRXXX97 has been added in
day zero setup. One can configure the field validations as per the functional requirements of saving a
transaction as template.

Validation for 'save as draft' (RRXXX98)
It requires separate entry in txn_data_master and txn_data.
(e.g select * from txn_data_master where idrequest like 'RRPPT98%' and select * from txn_data where
idrequest like 'RRPPT98%')

Validation is not require for 'transaction - template' screen (RRXXX89)

14 Generic Payments Design

3.5 CONFIGURING THE BENEFICIARY FOR PAYMENTS TRANSACTION

As per the current architecture a developer needs to follow a fixed set of screen sequence number for
creating Beneficiary Transaction of the corresponding Payment module. Developer need to use screen
no 26, 27, 28 for Beneficiary creation screen flow and 56, 57, 58 for Beneficiary modification screen
flow. So, for configuring Beneficiary for UK Payments (idtxn PPT), entry required in mstchannelats would
be RRPPT26, RRPPT27, RRPPT28, RRPPT56, RRPPT57, and RRPPT58. Screen sequence no 26, 27 and 28
are meant for initiating a new beneficiary creation, while 56, 57 and 58 are meant for modifying an
existing beneficiary. To support authorization on beneficiary of each transaction one needs to define a
new idtxn. For example, idtxn for beneficiary of UK Payments (idtxn PPT) is PPB.

15 Generic Payments Design

4. 4.Add/Modify a Beneficiary Type

Beneficiary data is stored in MSTTEMPLATEMASTER table in flat columns. The UDF fields used for
beneficiary are also stored in flat columns. Following steps are to be followed in case of adding or
modifying a beneficiary type.

16 Generic Payments Design

4.1 ADDING A UDF FIELD

While adding any “UDF” field, following components should be modified-

1. MSTTEMPLATEMASTER:- Add a column name same as udf filed name by adding prefix “UDF_”.
For example if newly added udf field is –“fldpetname” then column name must be
“UDF_fldpetname”.

2. FCAT_VW_MSTBENEFICIARY:- Select newly added column in this view.

17 Generic Payments Design

4.2 ADDING A NON-UDF FIELD

While adding any “non-UDF” field, following components should get modified-

1. MSTTEMPLATEMASTER:- Add appropriate column in this table

2. FCAT_VW_MSTBENEFICIARY:- Select newly added column in this view.

3. PROC_CREATE_BENE_TEMPLATE:- Modify the procedure appropriately to

save/update/delete data.

4. genericbeneficiarytemplate.xsl:- Modify service xsl as per new addition of new field.

5. Extend the endpoint to fetch/insert/update the new beneficiary field.

6. DTO: - Create a new DTO with BeneficiaryDTO and the new field as per the requirement.

